“CLASSICAL” FLAG VARIETIES FOR QUANTUM GROUPS: THE STANDARD QUANTUM SL(n,C)

نویسنده

  • CHRISTIAN OHN
چکیده

We suggest a possible programme to associate geometric “flaglike” data to an arbitrary simple quantum group, in the spirit of the noncommutative algebraic geometry developed by Artin, Tate, and Van den Bergh. We then carry out this programme for the standard quantum SL(n) of Drinfeld and Jimbo, where the varieties involved are certain T -stable subvarieties of the (ordinary) flag variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categorified quantum sl(2) and equivariant cohomology of iterated flag varieties

A 2-category was introduced in math.QA/0803.3652 that categorifies Lusztig’s integral version of quantum sl(2). Here we construct for each positive integer N a representation of this 2-category using the equivariant cohomology of iterated flag varieties. This representation categorifies the irreducible (N + 1)-dimensional representation of quantum sl(2).

متن کامل

. A G ] 6 O ct 1 99 7 ON QUANTUM COHOMOLOGY RINGS OF PARTIAL FLAG VARIETIES

The main goal of this paper is to give a unified description for the structure of the small quantum cohomology rings for all homogeneous spaces of SL n (C). The quantum cohomology ring of a smooth projective variety, or, more generally of a symplectic manifold, has been introduced by physicists in the study of topo-logical field theories ([V], [W]). In the past few years, the highly non-trivial...

متن کامل

Quantum Cohomology of Partial Flag Manifolds

We give elementary geometric proofs of the structure theorems for the (small) quantum cohomology of partial flag varieties SL(n)/P , including the quantum Pieri and quantum Giambelli formulas and the presentation.

متن کامل

Induced Representations of Hopf Algebras: Applications to Quantum Groups at Roots of 1

Introduction This paper serves three purposes. The first is to build up a connection between the representation theories of the quantum enveloping algebra U of a semisimple Lie algebra and the quantum groups defined in [15]. The second one is to study the structure of the derived functors of the induction functor, defined in [1]. At each integral weight, these derived functors give rise to cert...

متن کامل

Mutations of Puzzles and Equivariant Cohomology of Two-step Flag Varieties

We introduce a mutation algorithm for puzzles that is a threedirection analogue of the classical jeu de taquin algorithm for semistandard tableaux. We apply this algorithm to prove our conjectured puzzle formula for the equivariant Schubert structure constants of two-step flag varieties. This formula gives an expression for the structure constants that is positive in the sense of Graham. Thanks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008